Let $G \neq \empty$ be a set and $\circ$ be a binary operation on $G$.
$(G, \circ)$ is called a group if it satisfies the following.
$G$ is commutative or abelian if $a \circ b = b \circ a$ for all $a, b \in G$
Under ordinary $+$, $(\mathbb{Z}, +)$, $(\mathbb{Q}, +)$, $(\mathbb{R}, +)$, $(\mathbb{C}, +)$ are groups
Under ordinary $+$, $(\mathbb{N}, +)$ is not a group.
Under ordinary $\times$, none of $(\mathbb{Z}, \times)$, $(\mathbb{Q}, \times)$, $(\mathbb{R}, \times)$, $(\mathbb{C}, \times)$ are groups
Under ordinary $\times$, $(\mathbb{Q}^, \times)$, $(\mathbb{R}^, \times)$, $(\mathbb{C}^*, \times)$ are groups.
Under ordinary $-$, $(\mathbb{Z}, -)$, $(\mathbb{Q}, -)$, $(\mathbb{R}, -)$ are not groups