Let $A$ and $B$ be sets
$A \cup B$ is the union of $A$ and $B$
$A \cap B$ is the intersection of $A$ and $B$
$A \Delta B$ is the symmetric difference of $A$ and $B$
in other notation
$$ \{x : (x \in A \land x \not \in B) \lor (x \in B \land x \not \in A)\} $$
Example: $\{1, 2, 3, 4\} \Delta \{3, 4, 5, 6\} = \{1, 2, 5, 6\}$
$A \Delta B = B \Delta A = (A \cup B) - (A \cap B) = (A - B) \cup (B - A)$
$A$ and $B$ are disjoint if $A \cap B = \emptyset$
$\bar A$ is the complement of $A$
$A - B = \{x: x \in A \land x \not \in B\}$
$\bigcup_{i \in I} A_i = \{x : x \in A_i \text{ for some } i \in I\}$
$$ \bigcup_{i \in I} A_i = A_0 \cup A_1 \cup .... $$
$\bigcap_{i \in I} A_i = \{x : x \in A_i \text{ for all } i \in I\}$
$$ \overline{\bigcup_{i \in I}} A_i = \bigcap_{i \in I} \overline{A_i} $$
$$ \overline{\bigcap_{i \in I}} A_i = \bigcup_{i \in I} \overline{A_i} $$