The Principle of Inclusion & Exclusion

Let $S$ be a set with $|S| = N$.

Let $c_1, c_2, ..., c_t$ be conditions on the elements of $S$.

$N(a b c ...)$ denotes the number of elements of $S$ that satisfy

$$ a \land b \land c \land ... $$

So $N(\bar c_1 \bar c_2, ... \bar c_t)$ denotes the number of elements of $S$ that satisfy none of the conditions $c_i$.

$$ \begin{aligned} N(\bar c_1 \bar c_2 ... \bar c_t) &= N - \sum_{i \leq i \leq t} N(c_i) + \sum_{i \leq i < j \leq t} N(c_ic_j)

\end{aligned} $$


Venn Diagram

Euler Phi Func.

Arithmetic & Multiplicative Func.

Permutation w/o fixed points

Derangements

Integer Sol. of Linear Eq. with Upper Bound


Generalized Principle of Inclusion & Exclusion